Incomplete decode-and-forward protocol using distributed space-time block codes

نویسندگان

  • Charlotte Hucher
  • Ghaya Rekaya-Ben Othman
  • Ahmed Saadani
چکیده

In this work, we explore the introduction of distributed space-time codes in decode-and-forward (DF) protocols. A first protocol named the Asymmetric DF is presented. It is based on two phases of different lengths, defined so that signals can be fully decoded at relays. This strategy brings full diversity but the symbol rate is not optimal. To solve this problem a second protocol named the Incomplete DF is defined. It is based on an incomplete decoding at the relays reducing the length of the first phase. This last strategy brings both full diversity and full symbol rate. The outage probability and the simulation results show that the Incomplete DF has better performance than any existing DF protocol and than the non-orthogonal amplify-and-forward (NAF) strategy using the same space-time codes. Moreover the diversity-multiplexing gain tradeoff (DMT) of this new DF protocol is proven to be the same as the one of the NAF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique word-based distributed space-time block codes for two-hop wireless relay networks

Recently, the idea of space-time coding has been applied to wireless relay networks wherein a set of geographically separated relay nodes cooperate to process the received signal from the source and forward them to the destination such that the signal received at the destination appears like a Space-Time Block Code (STBC). Such STBCs (referred to as Distributed SpaceTime Block Codes (DSTBCs)) w...

متن کامل

Approximately-Universal Space-Time Codes for the Parallel, Multi-Block and Cooperative-Dynamic-Decode-and-Forward Channels

Explicit codes are constructed that achieve the diversity-multiplexing gain tradeoff of the cooperative-relay channel under the dynamic decode-andforward protocol for any network size and for all numbers of transmit and receive antennas at the relays. A particularly simple code construction that makes use of the Alamouti code as a basic building block is provided for the single relay case. Alon...

متن کامل

Relay on-off threshold for NDF protocol with distributed orthogonal space-time block codes

In this article, a relay on-off threshold (ROT) based on symbol error rate is derived for the cooperative communication networks with multiple antennas, where the non-orthogonal decode-and-forward (NDF) protocol with source antenna switching and linear combining decoding are used as the relaying protocol and decoding scheme, respectively. The optimal ROT for the cases using distributed orthogon...

متن کامل

Rateless Coding over Wireless Relay Networks Using Amplify/Decode and Forward Relays

In this paper two different rateless transmissionschemes are developed. In the proposed scheme, relay node candecode and forward the message to the destination if they areable to decode it, or amplify and forward the message to thedestination. Based on the analysis and simulation resultsprovided in this paper, the proposed method has bettertransmission time than the scheme which only the relay ...

متن کامل

Polarization of Multi-Relay Channels: A Suitable Method for DF and CF Relaying with Orthogonal Receiver

Polar codes, that have been recently introduced by Arikan, are one of the first codes that achieved the capacity for vast numerous channels and they also have low complexity in symmetric memoryless channels. Polar codes are constructed based on a phenomenon called channel polarization. This paper discusses relay channel polarization in order to achieve the capacity and show that if inputs of tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0811.0543  شماره 

صفحات  -

تاریخ انتشار 2008